Measures of Success
Progress report 3/20/14

Update from Lawrence, not the full committee
Measures of success committee

Measurable indicators of desirable change
Specific indicators in attached text

Inputs
- People
- Funding
- Agency resources
- Private sector resources

Human
- Partner Organizations
- Partner Agribusinesses
- Farmer knowledge and attitude
- Point source communities and management knowledge and attitude

Land
- Land use changes
 - Net acres cover crops
 - Net acres perennials
 - Etc.
- Practice adoption
 - Acres of practice X
 - Acres of practice Y
 - Etc.
- Point source implementation
 - Feasibility studies
 - Permit applications
 - Construction

Water
- Calculated load reduction
- Measured loads in priority watersheds
- Organized watersheds reported load changes
- Measured loads at existing monitoring stations
Resources for Water Quality

Drops in the Bucket: The Erosion of Iowa Water Quality Funding

– Will Hoyer, Brian McDonough, David Osterberg
– March, 2012. The Iowa Policy Project

Report tracks funding for 10 distinct funding lines directed to water quality for the FY 2002-2012 period.
Resources for Water Quality

IDALS
• Conservation Reserve Enhancement Program (CREP)
• Conservation Reserve Program (CRP)
• Watershed Protection Fund
• Soil Conservation Cost Share
• Agricultural Drainage Well Closure
• Water Protection Loan Program

DNR and IDALS
• Resource Enhancement and Protection

DNR
• Geographic Information Systems (GIS) for Watersheds
• Water quality monitoring
• Water Quality Protection Fund
Resources for Water Quality

Figure 2. Adjusted for Inflation, General Funding Flat or Down from Iowa, U.S. Values in Millions — 2011 Dollars
Farm and Rural Life Poll

- Iowa State University
- Established in 1982
- Approximately 2,000 Iowa farm operators participate annually
- Reoccurring questions that include conservation attitude and action
Farm and Rural Life Poll 2010

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Uncertain</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Cover crops can reduce soil erosion significantly (n=1,275)</td>
<td>0.9</td>
<td>2.6</td>
<td>14.1</td>
<td>67.6</td>
<td>14.7</td>
</tr>
<tr>
<td>b. Cover crops reduce N and P losses (n=1,271)</td>
<td>0.6</td>
<td>5.7</td>
<td>35.4</td>
<td>49.3</td>
<td>9.0</td>
</tr>
<tr>
<td>c. If 50 percent cost-share were available for cover crop establishment, I would plant them (n=1,263)</td>
<td>3.3</td>
<td>15.3</td>
<td>53.6</td>
<td>22.2</td>
<td>5.5</td>
</tr>
<tr>
<td>d. I don’t know enough about cover crops to use them (n=1,264)</td>
<td>5.0</td>
<td>27.1</td>
<td>32.9</td>
<td>32.7</td>
<td>2.3</td>
</tr>
<tr>
<td>e. Cover crops can improve soil productivity (n=1,263)</td>
<td>0.6</td>
<td>3.2</td>
<td>33.1</td>
<td>54.9</td>
<td>8.2</td>
</tr>
<tr>
<td>f. I don’t have the necessary equipment for cover crops (n=1,257)</td>
<td>4.0</td>
<td>24.7</td>
<td>31.1</td>
<td>36.2</td>
<td>4.1</td>
</tr>
<tr>
<td>g. Cover crops can delay spring planting (n=1,260)</td>
<td>1.5</td>
<td>15.2</td>
<td>45.6</td>
<td>33.7</td>
<td>4.0</td>
</tr>
<tr>
<td>h. If shorter-season crop varieties yielded the same as longer-season, I would be more likely to plant cover crops (n=1,258)</td>
<td>1.4</td>
<td>12.4</td>
<td>54.6</td>
<td>29.3</td>
<td>2.3</td>
</tr>
<tr>
<td>i. There is rarely enough time between harvest and winter to justify the use of cover crops (n=1,269)</td>
<td>1.1</td>
<td>7.4</td>
<td>30.6</td>
<td>47.8</td>
<td>13.1</td>
</tr>
<tr>
<td>j. I would like to learn more about using cover crops (n=1,249)</td>
<td>2.9</td>
<td>13.1</td>
<td>43.6</td>
<td>36.0</td>
<td>4.5</td>
</tr>
<tr>
<td>A good farmer is one who...</td>
<td>Not Important at All</td>
<td>Not Really Important</td>
<td>Somewhat Important</td>
<td>Important</td>
<td>Very Important</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>d. considers the health of streams that run through or along their land to be their responsibility (n=1,323)</td>
<td>0.5</td>
<td>1.4</td>
<td>16.7</td>
<td>54.0</td>
<td>27.5</td>
</tr>
<tr>
<td>e. minimizes soil erosion (n=1,323)</td>
<td>0.1</td>
<td>0.3</td>
<td>7.3</td>
<td>50.0</td>
<td>42.3</td>
</tr>
<tr>
<td>f. minimizes nutrient runoff into waterways (n=1,321)</td>
<td>0.1</td>
<td>0.4</td>
<td>8.1</td>
<td>49.1</td>
<td>42.3</td>
</tr>
<tr>
<td>k. uses cover crops between harvest and planting (n=1,313)</td>
<td>5.5</td>
<td>38.3</td>
<td>39.5</td>
<td>13.0</td>
<td>3.7</td>
</tr>
<tr>
<td>u. avoids fall tillage (n=1,308)</td>
<td>3.9</td>
<td>22.9</td>
<td>33.1</td>
<td>29.2</td>
<td>10.9</td>
</tr>
<tr>
<td>y. minimizes tillage (n=1,317)</td>
<td>1.7</td>
<td>11.2</td>
<td>34.7</td>
<td>38.4</td>
<td>14.0</td>
</tr>
<tr>
<td>aa. puts long-term conservation of farm resources before short-term profits (n=1,314)</td>
<td>0.8</td>
<td>3.3</td>
<td>28.0</td>
<td>47.6</td>
<td>20.3</td>
</tr>
<tr>
<td>ad. thinks beyond their own farm to the social and ecological health of their watershed (n=1,320)</td>
<td>0.7</td>
<td>3.5</td>
<td>32.5</td>
<td>47.8</td>
<td>15.5</td>
</tr>
</tbody>
</table>
Farm and Rural Life Poll 2010

Conservation practices

<table>
<thead>
<tr>
<th>Practice</th>
<th>Have established adequate extent</th>
<th>Should establish practice</th>
<th>Practice not needed or not applicable</th>
<th>Don’t know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Terraces (n=1,283)</td>
<td>36.2</td>
<td>12.0</td>
<td>46.9</td>
<td>4.9</td>
</tr>
<tr>
<td>b. Grassed waterways (n=1,296)</td>
<td>66.0</td>
<td>18.1</td>
<td>14.4</td>
<td>1.5</td>
</tr>
<tr>
<td>c. Conservation tillage (no-till, reduced tillage, strip tillage, etc.) (n=1,292)</td>
<td>66.5</td>
<td>11.6</td>
<td>18.0</td>
<td>3.9</td>
</tr>
<tr>
<td>d. Buffer strips of grass and/or trees along ditches, streams, and other waterways (n=1,291)</td>
<td>53.3</td>
<td>13.3</td>
<td>29.7</td>
<td>3.7</td>
</tr>
<tr>
<td>e. Contour buffer strips of grass or other perennial vegetation (n=1,287)</td>
<td>28.4</td>
<td>11.7</td>
<td>53.8</td>
<td>6.1</td>
</tr>
<tr>
<td>f. Manure management plan (n=1,282)</td>
<td>24.6</td>
<td>6.8</td>
<td>64.0</td>
<td>4.6</td>
</tr>
<tr>
<td>g. Nutrient management plan (n=1,274)</td>
<td>41.6</td>
<td>18.1</td>
<td>31.6</td>
<td>8.7</td>
</tr>
<tr>
<td>h. Cover crops (n=1,275)</td>
<td>11.5</td>
<td>18.2</td>
<td>57.5</td>
<td>12.9</td>
</tr>
<tr>
<td>i. Integration of small grain or forage crops into your crop rotation (n=1,255)</td>
<td>25.7</td>
<td>11.0</td>
<td>53.1</td>
<td>10.1</td>
</tr>
</tbody>
</table>
Farm and Rural Life Poll

• Examples of other topics
 – Nutrient removal wetlands
 – Perennials, CRP and biomass
 – Land owner attitudes
 – Water quality attitude
Public Cost Share Practices
Annual Survey of Partners

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency</td>
<td>Contract/Easement Length</td>
</tr>
<tr>
<td>Program</td>
<td>State/County/Watershed Level Tracking Potential</td>
</tr>
<tr>
<td>Practice Type/Code</td>
<td>Annual N Load Reduction (lbs)</td>
</tr>
<tr>
<td>Number of Practices</td>
<td>Annual P Load Reduction (lbs)</td>
</tr>
<tr>
<td>Practice Units (acres, feet, etc.)</td>
<td>Annual Sediment Load Reduction (lbs)</td>
</tr>
<tr>
<td>Area Served (ac)</td>
<td>Lifetime N Load Reduction (lbs)</td>
</tr>
<tr>
<td>Total C/S</td>
<td>Lifetime P Load Reduction (lbs)</td>
</tr>
<tr>
<td>Total Private Match</td>
<td>Lifetime Sediment Load Reduction (lbs)</td>
</tr>
<tr>
<td>Year Implemented</td>
<td>Reduction Calculation Method</td>
</tr>
<tr>
<td>Lifetime Expectancy (years)</td>
<td></td>
</tr>
</tbody>
</table>
Farm Service Administration

Annual County Level Data

Example of crops and use

<table>
<thead>
<tr>
<th>Crop Code</th>
<th>Crop</th>
<th>Intended Use</th>
<th>Planted Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>0011</td>
<td>Wheat</td>
<td>Forage</td>
<td></td>
</tr>
<tr>
<td>0016</td>
<td>Oats</td>
<td>Grain</td>
<td></td>
</tr>
<tr>
<td>0094</td>
<td>Rye</td>
<td>Left Standing</td>
<td></td>
</tr>
<tr>
<td>0129</td>
<td>Rapeseed</td>
<td>Forage</td>
<td></td>
</tr>
<tr>
<td>0265</td>
<td>Clover</td>
<td>Grazing</td>
<td></td>
</tr>
<tr>
<td>0296</td>
<td>Mixed forages</td>
<td>Cover Only</td>
<td></td>
</tr>
<tr>
<td>0099</td>
<td>CRP by type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0158</td>
<td>TRITICALE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CRP in Adair County

<table>
<thead>
<tr>
<th>CP1</th>
<th>CP2</th>
<th>CP3</th>
<th>CP4</th>
<th>CP5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST PERM INTRO GRASS AND LEGUME</td>
<td>EST PERM NATIVE GRASSES</td>
<td>TREE PLANTING</td>
<td>PERMANENT WL HABITAT</td>
<td>FIELD WINDBREAK NONEASE</td>
</tr>
<tr>
<td>CP21 FILTER STRIPS</td>
<td>CP22 RIPARIAN BUFFER</td>
<td>CP23 WETLAND RESTORATION</td>
<td>CP25 RARE AND DECLINING HABITAT</td>
<td>CP28 FWP BUFFER</td>
</tr>
<tr>
<td>CP3A HARDWOOD TREE PLANTING</td>
<td>CP42 POLLINATOR HABITAT</td>
<td>CP4D PERM WL HABITAT NONEASE</td>
<td>CP29 MPL WL HABITAT BUFFER</td>
<td>CP30 MPL WETLAND BUFFER</td>
</tr>
<tr>
<td>CP8 GRASS WATERWAYS</td>
<td></td>
<td></td>
<td>CP25 RARE AND DECLINING HABITAT</td>
<td>CP32 EXPIRED HARDWOOD TREES</td>
</tr>
<tr>
<td>CP28 FWP BUFFER</td>
<td></td>
<td></td>
<td></td>
<td>CP38B SAFE WETLANDS</td>
</tr>
<tr>
<td>CP8A GRASS WATERWAY NONEASE</td>
<td></td>
<td></td>
<td></td>
<td>CP38E SAFE GRASS</td>
</tr>
<tr>
<td>CP10 VEG COVER, GRASS ALREADY EST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP12 WILDLIFE(WL) FOOD PLOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP15 EST PERM VEG CVR CONTOUR STRPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
N and P Load Measurement in Iowa’s Water

- Iowa DNR: Iowa's Ambient Watershed Monitoring and Assessment Program
 - 98 Sites throughout State
 - Includes Sites Upstream and Downstream of Urban Centers
 - Monitored monthly
 - Mostly paired with USGS Gage locations
 - Data from 2000-2010
N and P Load Measurement in Iowa’s Water

- ISU, U of Iowa and UNI have monitoring
- Watershed scale monitoring
- Demonstration site monitoring
- Research scale monitoring
Other ongoing activities

• AAI technical committee on utilizing CCAs and agronomic databases to document acres
• WQI Communications Committee suggesting elements of “Partner Organizations”
• WPAC asked to suggest elements of “Partner Agribusinesses”
• DNR Nutrient Balance Committee discussing load measurements.
DNR 2012 Nonpoint Source Management Plan

Goals

1. Build Partnerships to Enhance a Collaborative Watershed Approach to Nonpoint Source Water Pollution

2. Improve Technical Assistance, Outreach and Education to Facilitate NPS Assessment, Planning and Implementation

3. Science-Based Performance Measures

4. Funding
Objective 3: SCIENCE-BASED PERFORMANCE MEASURES

1. Encourage greater public participation in the monitoring and evaluation of water quality best management practices.
2. Develop local natural resource goals with targeted solutions to meet watershed needs.
3. Utilize long-term research projects, including monitoring, funding, and alternative management practices to confirm post-project results of demonstration projects.
4. Place greater focus on up-scaling small-plot research to watershed scale.
5. Establish uniform practices and protocols for monitoring that can be applied to watershed needs.
Challenges

• What agency is responsible to
 – Collect each measure
 – Compile report
 – Post report

• What resources are available
DNR 2012 Nonpoint Source Management Plan

• Objective 1.1 Recommends a centralized clearing house for information and data sharing
• The WRCC and WPAC provide the perfect structure for a centralized clearing house for this type of reporting.
• Since the councils closely associate with the Secretary of Agriculture, the Department of Agriculture and Land Stewardship’s Division of Soil Conservation acts as the lead entity in this objective.
Iowa’s Ambient Monitoring Network

- 75+ Sites throughout State
- Includes Sites Upstream and Downstream of Urban Centers
- Monitored monthly
- Mostly paired with USGS Gage locations
- Data from 2000-2011
Previous Nutrient Load Estimations for Point and Non-point Sources
Stream Load Estimation Methods

• AutoBeale, Pete Richards, 1998

• Load Estimator (LoadEst), Rob Runkel, USGS, 2004

• Mean Value
Check for Unreasonable LoadEst Values

• More than +/- 15% of Mean Value loads
• Residual error more than +/- 2.0
• Error ratio > 10
• NO3-N concentration > 25 ppm
• Total P concentration > 10 ppm
• Check hydrograph vs. sample date to see if full range of flows sampled
2013 Technical Team : Collaboration

- IDALs
- ISU
- USGS
- IIHR
- Soybean Association
- DNR
2013 Technical Team: Goals

- Identify standard process for regularly calculating loads
 - Resource efficient
 - Use of existing data sources
 - Comparable from year to year

- Standard suite of tools to address problem data sets

- Will review process to incorporate new research as appropriate
Questions?
Iowa Hydrologic Network

To Analyze and Predict Floods and Droughts, Soil Moisture, Ground Water Levels, and Improve Crop Yields
What is it?

A network of 100 stations to measure water content and temperature in the soil, groundwater level in shallow wells, rainfall, and other weather data.

Why do we need it?

To better predict floods, assess droughts, manage our water resources, and help Iowa’s ag producers with crop management and increased yields.

Who will do it?

IIHR-Hydroscience & Engineering of the University of Iowa with the recently acquired Iowa Geological Survey (formerly with Iowa DNR), Iowa Flood Center, and Iowa State University experts.

Can they do it?

IIHR will leverage the expertise and experience of building and deploying over 200 bridge sensors in Iowa; building similar networks for NASA, and operating a research rainfall network for over 15 years. All data will be publicly available in real time over the Internet.

How much will it cost?

One time investment of $1M plus $100K annually for upkeep and operation. Each station costs about $5K plus $5K for well drilling. There will be a station in each county.

When can we have it?

The network will be constructed and deployed over a two-year span 2015-2016.
Iowa Groundwater Observation and Forecasting Program

Current Iowa groundwater observations are inadequate. However, numerous existing observation wells can be used to expand upon available information. Restoration and sampling of wells carefully selected to ensure a complete and accurate characterization of Iowa’s aquifers will inform appropriate use of this valuable and limited resource.

Observations will provide information necessary to create computer simulations of regional groundwater levels. Computer simulations will be used to forecast aquifer changes and aid in planning and management of groundwater resources.
Groundwater is a valuable but limited resource
A more complete understanding of Iowa’s groundwater resources is necessary to ensure they remain a reliable source for municipal, industrial, and private water needs.

More groundwater observations are needed
Numerous wells have already been installed throughout the state and can be used to observe groundwater levels. Manual and automated measurements at up to 120 wells, carefully selected to ensure a complete and accurate characterization of Iowa’s aquifers, will capture current conditions and trends in Iowa’s groundwater levels.

Groundwater forecasting will aid in planning and resource management
The observation program will provide information necessary to create computer simulations of regional groundwater resources. Computer simulations will be used to forecast aquifer response to changes in rainfall or groundwater withdrawals.

Groundwater information is valuable in understanding droughts and floods
Measurement and simulation of Iowa’s groundwater resources will complement ongoing and developing programs at the Iowa Flood Center by providing a complete characterization of atmospheric, surface water, and groundwater systems affecting water quantity. Alluvial wells will allow Iowa Flood Center researchers to better understand surface water / groundwater connectivity and its importance in flood processes, improving their ability to forecast short-term flood risks.

Scope of work
The Iowa Geological Survey, a unit of the University of Iowa’s IIHR-Hydroscience & Engineering, will
• develop a groundwater measurement program to track water levels in Iowa aquifers using manual and automated measurement techniques at up to 100 sites;
• drill up to 20 new wells in targeted areas to better understand how withdrawals associated with municipal, industrial, and private activities may interact, and to create nested well groups that allow sampling from multiple aquifers at different depths;
• perform computer simulations of regional groundwater resources to predict groundwater availability;
• and make measurement and simulation data available via a web-based portal.

Budget

- Drilling of new wells in targeted areas of intense withdrawal or geological significance $100,000
- Automated groundwater level measurement instrumentation (up to 20 sites) $100,000
- Quarterly well measurement and maintenance (up to 100 sites) $100,000
- Computer simulation of Iowa’s groundwater resources $100,000

Total $400,000