

Are there early warnings of HABs in lakes?

Putting early warnings into practice in lowa

In 2017, three out of four Iowa lakes are considered eutrophic or hypereutrophic

- Anoxic bottom waters
- Algal scums
- Taste and odor issues
- Fish kills possible
- Cyanobacteria & cyanotoxin risk

What controls cyanotoxin production?

Combining genetic techniques with microcystin assays and environmental data to address this question in Iowa lakes

Nutrient Loading Small Perturbation

Can early warnings be used to prevent sustained HABs?

- Acted on the early warning alarms and intervened
- The lake recovered and did not stay in the bloom state

Are early warnings of HABs detectable in lowa Lakes?

Data courtesy of Jason Palmer, Iowa DNR

Reactive vs. Proactive Management

A Tool for Proactive Management

Herbicide application with minimal ecological and service impact

Beach closures to minimize toxin exposure risk

Aeration and mixing systems to prevent fish kills

